Biosynthesis of glycosylphosphatidylinositol (GPI)-anchored membrane proteins in intact cells: specific amino acid requirements adjacent to the site of cleavage and GPI attachment

نویسندگان

  • K Kodukula
  • L D Gerber
  • R Amthauer
  • L Brink
  • S Udenfriend
چکیده

Mutational studies were previously carried out at the omega site intact cells (Micanovic, R., L. Gerber, J. Berger, K. Kodukula, and S. Udenfriend. 1990. Proc. Natl. Acad. Sci. USA. 87:157-161; Micanovic R., K. Kodukula, L. Gerber, and S. Udenfriend. 1990. Proc. Natl. Acad. Sci. USA: 87:7939-7943) and at the omega + 1 and omega + 2 sites in a cell-free system (Gerber, L., K. Kodukula, and S. Udenfriend. 1992. J. Biol. Chem. 267:12168-12173) of nascent proteins destined to be processed to a glycosylphosphatidyl-inositol (GPI)-anchored form. We have now mutated the omega + 1 and omega + 2 sites in placental alkaline phosphatase (PLAP) cDNA and transfected the wild-type and mutant cDNAs into COS 7 cells. Only glycine at the omega + 2 site yielded enzymatically active GPI membrane-anchored PLAP in amounts comparable to the wild type (alanine). Serine was less active and threonine and valine yielded very low but significant activity. By contrast the omega + 1 site was promiscuous, with only proline being inactive. These and the previous studies indicate that the omega and omega + 2 sites of a nascent protein are key determinants for recognition by COOH-terminal signal transamidase. Comparisons have been made to specific requirements for substitution at the -1, -3 sites of amino terminal signal peptides for recognition by NH2-terminal signal peptidase and the mechanisms of NH2 and COOH-terminal signaling are compared.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of mammalian GPI-anchored proteins by hydropathy and amino acid propensities.

The glycosylphosphatidylinositol (GPI) attachment is a most important post-translational modification of proteins that plays essential roles in promoting the biochemical activities of eukaryotic cells. Described here is an analysis of the amino acid properties of mammalian GPI-anchored proteins (GPI-APs) and the development of an innovative method of detecting them. GPI-APs are characterized by...

متن کامل

Requirements for glycosylphosphatidylinositol attachment are similar but not identical in mammalian cells and parasitic protozoa

The general features of the glycosylphosphatidylinositol (GPI) signal have been conserved in evolution. To test whether the requirements for GPI attachment are indeed the same in mammalian cells and parasitic protozoa, we expressed the prototype GPI-linked protein of Trypanosoma brucei, the variant surface glycoprotein (VSG), in COS cells. Although large amounts of VSG were produced, only a sma...

متن کامل

Specific requirements for the ER to Golgi transport of GPI-anchored proteins in yeast.

GPI-anchored proteins are attached to the membrane via a glycosylphosphatidylinositol-(GPI) anchor whose carbohydrate core is conserved in all eukaryotes. Apart from membrane attachment, the precise role of the GPI-anchor is not known, but it has been proposed to play a role in protein sorting. We have investigated the transport of the yeast GPI-anchored protein Gas1p. We identified two mutant ...

متن کامل

Identification of six complementation classes involved in the biosynthesis of glycosylphosphatidylinositol anchors in Saccharomyces cerevisiae

Glycosylphosphatidylinositol (GPI)-anchored membrane proteins are synthesized by the posttranslational attachment of a preformed glycolipid to newly made glycoproteins. alpha-Agglutinin is a GPI-anchored glycoprotein that gets expressed at the cell surface of MAT alpha cells after induction with type a mating factor. Mutants affecting the biosynthesis of GPI anchors were obtained by selecting f...

متن کامل

Saponin-induced release of cell-surface-anchored Thy-1 by serum glycosylphosphatidylinositol-specific phospholipase D.

A glycosylphosphatidylinositol-specific phospholipase D (GPI-PLD) was purified from human serum and used for studies on the release of GPI-anchored Thy-1 glycoprotein from mouse T lymphoma cells Y191. Previous studies have shown that whereas GPI-PLD is highly active against detergent-solubilized GPI-anchored proteins, it is normally unable to release GPI-containing proteins anchored in a lipid ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 120  شماره 

صفحات  -

تاریخ انتشار 1993